quarta-feira, 9 de outubro de 2019

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Camada de valência é a última camada a receber elétron no átomo ou o nível de maior número quântico principal e secundário na distribuição eletrônica. Normalmente os elétrons pertencentes à camada de valência são os que participam de alguma ligação química, pois são os mais externos. A contagem e distribuição dos elétrons é feita sempre de dentro (perto do núcleo) para fora.[1][2]
Por Exemplo :  - têm 8 eletrons na camada de valência (). A camada de valência é a última camada de distribuição eletrônica, contendo o subnível mais energético. O Diagrama de Pauling estabelece que os átomos podem possuir sete camadas de distribuição atômica. Estas camadas são denominadas .

X
FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Notação de Lewis do Carbono , ilustrando a camada de valência.
Cada uma destas camadas possuem um número máximo de elétrons. Assim, as camadas acima possuem, respectivamente  elétrons. A camada de valência necessita, na maior parte dos átomos, de  elétrons para que seja estável. Essa é a teoria do octeto.
Quando não há estabilidade, os átomos tendem a fazer ligações químicas com elementos que possam proporcionar os elétrons faltantes.
Os gases nobres possuem  elétrons em sua camada de valência, a única exceção é Hélio, que possui  elétrons. Todos são estáveis, não necessitando realizar ligações químicas para adquirir estabilidade.
Como exemplo das ligações ocorridas em razão dos elétrons presentes na camada de valência, estão o Oxigênio, que possui  elétrons na última camada e o Hidrogênio, que possui  elétron na ultima camada. O Oxigênio necessita de dois elétrons para ficar estável e o Hidrogênio, de um elétron. Desta forma, ocorre uma ligação em que dois átomos de Hidrogênio compartilham cada um, 1 elétron com o Oxigênio. Assim, o Oxigênio adquire a estabilidade através dos dois elétrons compartilhados, assim como o Hidrogênio, que adquire mais um elétrons na camada de valência. Essa é a ligação que ocorre formando moléculas de água.[3]
Outro exemplo conhecido é o cloreto de sódio ou sal de cozinha. O Cloro possui  elétrons na camada de valência. O Sódio, por sua vez, possui um elétron na camada de valência. Assim, o Sódio se torna um cátion, pois perde um elétron, e o Cloro se torna um ânion, pois ganha um elétron.
A representação da tabela periódica permite que, através de uma breve análise, se conclua a respeito da quantidade de eletrons da última camada. Assim, os grupos  possuem, respectivamente,  elétrons na última camada. Além disso, para o restante dos elementos presentes na tabela periódica, é possível identificar o número de elétrons da camada de valência através da representação da distribuição eletrônica. Assim, tem-se a respeito do elemento Ferro:


A unidade de energia no sistema internacional de unidades é o joule (J). O joule é uma unidade derivada, equivalente a 1 newton metro () ou ainda a 1 quilograma metro quadrado por segundo quadrado ().
X
FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D